

A-CAN-DG-V2

Analog to CAN Converter

8 Analog +2 Digital inputs \because SN: I\#\#\#\#\#\#\#\#

Texense sensors are designed for data logging. Should the users want to include this sensor in a closed loop system, they must undertake total responsibility from doing so.

Analog inputs features				
Analog Inputs	Available ranges		$\begin{gathered} 0 \ldots+5 \\ \pm 10^{(1)} \end{gathered}$	V
	Pull-up		Internal	
	Input impedance	0...5V	1	M ת
		$\pm 10 \mathrm{~V}$	400	$k \Omega$
	$\begin{gathered} \text { Accuracy } \\ \text { (in the }-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \text { temperature range) } \end{gathered}$		0.5	\% FS
	Sampling (per channel)		500	Hz
AntiAliasing Filter (optional) ${ }^{(2)}$	Type		Low pass, Linear phase $5^{\text {th }}$ order	
	Cut-off frequency at -3 dB		Programmable from 15 to 250 Hz	
Digital inputs features				
Digital Inputs	Square wave level		0 to 5	V
			or NPN open collector	
	Pull		$10 \mathrm{k} \Omega$ to 5 V	
	Max freq	Cy ${ }^{(3)}$	8	kHz
	Max wheel speed ca frequ	d engine lation cy	200	Hz
Wheel Speed	Range		0 to 500	kph
			0 to 500	mph
	Circumf	nce	300 to 5000	mm
	Wheel top	/rev.	1 to 100	Tops/rev
	Resolution		0.01	kph/bit
			0.01	mph/bit
Engine speed	Range		0 to 2000	rpm
	Engine t	/rev.	1 to 100	Tops/rev
	Resolu		1	rpm/bit

(1) For $\pm 10 \mathrm{~V}$ input range, anti-aliasing filter option is not available. (2) If filter option is used
\rightarrow The speed inputs are disabled.
\rightarrow Pin 11 and 12 must not be connected. \rightarrow Frame Tx3 is not sent.
(3) Check max frequency for digital inputs as below:

Ex1: 8000 rpm with $48 \mathrm{tops} / \mathrm{rev} \rightarrow 8000 / 60 \times 48=6.4 \mathrm{KHz}$.
Ex2: $360 \mathrm{~km} / \mathrm{h}$ with 2 m wheel circumference and
$100 \mathrm{tops} / \mathrm{rev} \rightarrow 360 / 3.6 / 2 \times 100=5 \mathrm{KHz}$.

Date	Operator
Customer	
Order	
Product Ref	A-CAN-DG-V2-\#-\#-\#
SW version	V\#.\#\#

CAN bus features	
CAN bus 2.0A or 2.0B	120Ω : ayes $\nabla n o$
Baud rate	125 k to 1Mbps
Parameters	identifiers, baudrate, frequency, digital and analog inputs parameters.
Output frequency	1 Hz to $500 \mathrm{~Hz} z^{(4)}$, request mode.
Output format	16 bits or mV
Electrical features	

Supply voltage	6 to 16		
Typical supply current	35	V	
Sensor supply output	Protected supply		
	6 to $16 \mathrm{~V}(0.5 \mathrm{~A} \mathrm{max})$		
	Mechanical features		
Dimensions	See §Mechanical drawing		
Material	Aluminum		
Weight	45	g	
Protection	$\mathrm{IP67}$		
Vibration test	$20 \mathrm{Gpp} 5^{\prime}$		
Operating temperature	-40 to +125	${ }^{\circ} \mathrm{C}$	
Storage temperature	-40 to +125	${ }^{\circ} \mathrm{C}$	

${ }^{(4)} 500 \mathrm{~Hz}$: Only with baudrate 1 Mbps
Wheel and engine speeds are not available at this frequency.

Setup parameters		
CAN	2.0 A z.OB	-
Baudrate	1 M	bps
Frequency	10	Hz
Rx trig ID	$7 \mathrm{F0}$	Hex
Tx1 ID	$3 \mathrm{F0}$	Hex
Tx2 ID	3 F 4	Hex
Tx3 ID ${ }^{(2)}$		Hex
Output format $^{\text {Cut off frequency }}{ }^{(1)}$	16bits	mV
Speed unit ${ }^{(2)}$	km / h	mph
Wheel circumference ${ }^{(2)}$		Hz
Wheel tops / rev ${ }^{(2)}$		mm
Engine tops / rev ${ }^{(2)}$		$\mathrm{tops} / \mathrm{rev}$

Mechanical drawing and pinout

Standard version:

Connector: LEMO HES.2M.319.XLDP
Mating connector: LEMO FGS.2M.319.XLM

Function	Description	Pin
Supply	$\begin{gathered} \text { Supply } \\ \text { (6 to 16V) } \\ \hline \end{gathered}$	1
	GND ${ }^{(1)}$	2
Analog Inputs	Channel 1	3
	Channel 2	4
	Channel 3	5
	Channel 4	6
	Channel 5	7
	Channel 6	8
	Channel 7	9
	Channel 8	10
Digital Inputs	Wheel speed	11
	Engine speed	12
CAN	CAN High	13
	CAN Low	14
manufacturer reserved	do not connect	15
Sensor supply	$\begin{gathered} \hline \text { Protected supply } \\ 6 \text { to } 16 \mathrm{~V} \\ (0.5 \mathrm{~A} \mathrm{max}) \\ \hline \end{gathered}$	16
	5 V	17
	GND ${ }^{(1)}$	18
	GND(1)	19

(1) Ground pins are internally connected

Function	Description	Wire color	Ring
Supply	$\begin{gathered} \text { Supply } \\ \text { (} 6 \text { to } 16 \mathrm{~V} \text {) } \\ \hline \end{gathered}$	Red	Brown
	GND ${ }^{(1)}$	Black	Red
Analog Inputs	Channel 1	White	Orange
	Channel 2		Yellow
	Channel 3		Green
	Channel 4		Blue
	Channel 5		Purple
	Channel 6		Grey
	Channel 7		White
	Channel 8		Brown Black
Digital Inputs	Wheel speed	Orange	Brown Brown
	Engine speed		Brown Red
CAN	CAN High	Yellow	Brown Orange
	CAN Low	Blue	Brown Yellow
manufacturer reserved	do not connect	Green	Brown green
Sensor supply	$\begin{gathered} \hline \text { Protected supply } \\ 6 \text { to } 16 \mathrm{~V} \\ (0.5 \mathrm{~A} \mathrm{max}) \\ \hline \end{gathered}$	Red	Brown Blue
	5 V	Red	Brown Purple
	GND ${ }^{(1)}$	Black	Brown Grey
	GND ${ }^{(1)}$	Black	Brown White

(1) Ground pins are internally connected

Cable version:

Cable: $19 \times 28 A W G$, type $55 \mathrm{M}, 450 \mathrm{~V}, 200^{\circ} \mathrm{C}$
Tubing: RW-200-E-3/16
Cable length: 500 mm

CAN data output

Measure	Unit configuration	Range	Resolution	Data type	Comment
ANA voltage signal	mV	$0 . .5 \mathrm{~V}$	$1 \mathrm{mV} / \mathrm{bit}$	Unsigned int 16 bits	
		$\pm 10 \mathrm{~V}$	$1 \mathrm{mV} / \mathrm{bit}$	Signed int 16 bits	
	16 bits	$0 . .5 \mathrm{~V}$	$0.0763 \mathrm{mV} / \mathrm{bit}$	Unsigned int 16 bits	
		$\pm 10 \mathrm{~V}$	$0.1526 \mathrm{mV} / \mathrm{bit}$	Unsigned int 16 bits	$\begin{array}{\|l\|} \hline \text { Offset of } 32768 . \\ 0 \text { bits }=-10 \mathrm{~V} \text { and } 65535 \text { bits }=10 \mathrm{~V} \\ \hline \end{array}$
Wheel speed	kph	0...500 kph	$0.01 \mathrm{kph} / \mathrm{bit}$	Unsigned int 16 bits	Check max frequency for digital inputs as below: Ex1: 8000rpm with 48 tops/rev $\rightarrow 8000 / 60 \times 48=$ 6.4 KHz .
	mph	0... 500 mph	$0.01 \mathrm{mph} / \mathrm{bit}$	Unsigned int 16 bits	
Engine speed		see comment	$1 \mathrm{rpm} / \mathrm{bit}$	Unsigned int 16 bits	Check max frequency for digital inputs as below: Ex2: $360 \mathrm{~km} / \mathrm{h}$ with 2 m wheel circumference and 100 tops $/$ rev $\rightarrow 360 / 3.6 / 2 \times 100=5 \mathrm{KHz}$.

TX Frame \#01

ID	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
$0 \times 03 F 0$ (default)	MSB	LSB	MSB	LSB	MSB	LSB	MSB	LSB

TX Frame \#02

ID	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
0x03F4 (default)	MSB	LSB	MSB	LSB	MSB	LSB	MSB	LSB

TX Frame \#03

ID	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
0x03F8 (default)	MSB	LSB	MSB	LSB	Not used	Not used	Not used	Not used
	Wheel speed		Engine speed					
	Unsigned int 16 bits		Unsigned int 16 bits					

CAN data input

Rx Trig frame, for CAN request mode only

RX Frame

ID	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
0x07F0 (default)	-	-	-	-				

Parameters

Must be setup according to Texense CAN protocol, or by using the tWist ${ }^{\circ}$ software (texense Windows software tool) with the tSIB (texense Smart Interface Box).
CAN bus parameters:

Address	Parameter	Raw values	Values	Comments	
0x00	Baudrate \& CAN Type	0×00	CAN2.0A 1 Mbps	Default	
		0×01	CAN2.0A 500 Kbps		
		0×02	CAN2.0A 250 Kbps		
		0×03	CAN2.0A 125 Kbps		
		0×10	CAN2.0B 1Mbps		
		0×11	CAN2.0B 500 Kbps		
		0×12	CAN2.0B 250 Kbps		
		0×13	CAN2.0B 125 Kbps		
0x01	Emission frequency	0×00	Rx frame trig	Request mode - 100 Hz max.	
		0×01	1 Hz		
		0×02	5 Hz		
		0×03	10 Hz	Default	
		0×04	50 Hz		
		0×05	100 Hz		
		0×06	200 Hz		
		0×07	500 Hz	Only with baudrate 1Mbps. Speeds are not available for this frequency.	
0x02	Rx frame ID	$\begin{aligned} & \text { if CAN2.0A: } 0 \text { to } 0 \times 7 \text { F0 } \\ & \text { if CAN2.0B: } 0 \text { to 0xFFFF } \end{aligned}$		MSB	Default 0x07F0
0×03				LSB	
0x04	Tx1 frame ID	if CAN2.0A: 0 to 0x7F0 if CAN2.0B: 0 to 0xFFFF		MSB	Default 0x03F0
0×05				LSB	
0×06	Tx2 frame ID	$\begin{aligned} & \text { if CAN2.0A: } 0 \text { to 0x7F0 } \\ & \text { if CAN2.0B: } 0 \text { to 0xFFFF } \end{aligned}$		MSB	Default 0x03F4
0×07				LSB	
0×08	Tx3 frame ID	if CAN2.0A: 0 to $0 x 7 F 0$ if CAN2.0B: 0 to 0xFFFF		MSB	Default 0x03F8
0x09				LSB	

Digital Input parameters:

$0 \times 0 \mathrm{~A}$	Speed Unit	0	$0.01 \mathrm{mph} / \mathrm{bit}$		
		1	0.01 kph/bit	Default	
OxOB	Wheel circumference	300 to 5000	mm	MSB	Default 2000
OxOC				LSB	
0x0D	Wheel tops / rev	1 to 100			ault 1
0x0E	Engine tops / rev	1 to 100			fault 1

Analog Input parameters:

$0 \times 0 \mathrm{~F}$	Output format	0	16 bits	mV
		15 to 250	Hz	Default $1(\mathrm{mV})$
0×10	Cl 2	Default 250		

(1) Only for AA option. Not available for $\pm 10 \mathrm{~V}$ input range.

Ordering information

Ordering ref:
A-CAN-DG-V2 - Input range-AA filter- Option

5:0V...5V input range $10: \pm 10 \mathrm{~V}$ input range

