AC-CAP2-50

2 axis capacitive accelerometer 50G SN: A\#\#\#\#\#\#\#\#

Texense sensors are designed for data logging. Should the users want to include this sensor in a closed loop system, they must undertake total responsibility from doing so.

Measurement features			
Range		± 50	G
Sensitivity		$40 \pm 8 \%$	mV / G
Sensitivity drift	$20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$	± 2.5	\%
	$20^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	± 4	
Signal at 0 G		2.500 ± 0.040	V
Offset drift	$\begin{gathered} 20^{\circ} \mathrm{C} \text { to } 80^{\circ} \mathrm{C} \\ 20^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{gathered}$	± 20	mV
		± 30	
$\begin{gathered} \text { Cut-off frequency } \\ -3 \mathrm{~dB} \\ (\pm 10 \%) \end{gathered}$	cy Min	40	Hz
	Default	270	
	Max	400	
Calibrator		LDS V406	
Resonance		24	kHz
Max Cross axis sensitivity		3	\%
Electrical features			
Supply Voltage		5.5 to 16	V
Supply Current		< 3	mA
Output Voltage		0-5	V
Output Impedance		<10	Ω
Mechanical features			
Dimensions		$25 \times 16 \times 8$	mm
Material		Aluminium	
Weight		15	g
Protection		IP66	
Environment			
Shock		1000	G
Insulation under 50V ${ }_{\text {DC }}$		>55	$\mathrm{M} \Omega$
Operating Temp		-20 to +125	${ }^{\circ} \mathrm{C}$
Storage Temp		-40 to +125	${ }^{\circ} \mathrm{C}$

Date	
Customer	
Order	
Product Ref	AC-CAP2-50-\#\#\#

Sensor readings		
Axis	X	Y
Signal @-1G	$\ldots \mathrm{V}$	$\ldots . \mathrm{V}$
Signal @ 0G	$\ldots \mathrm{V}$	$\ldots \mathrm{V}$
Signal @ +1G	$\ldots \mathrm{V}$	$\ldots \mathrm{V}$
Sensitivity	$\ldots \mathrm{mV} / \mathrm{G}$	$\ldots \mathrm{mV} / \mathrm{G}$
Cut off frequency at -3 dB	$\ldots \mathrm{Hz}$	$\ldots \mathrm{Hz}$
Cross Axis	$\ldots \%$	$\ldots \%$

Cable		
4x26AWG FEP tinned copper braided cable $250 \mathrm{~V} 200^{\circ} \mathrm{C}$ Length: 1000 mm Connector: on request	Function	Pin
Color	Supply	-
Red	OV	-
Black	Signal X	-
White	Signal Y	-
Green	Not connected	
Braid		

Standard calibration table	
Acceleration (G)	Output signal $\mathrm{V})$
-50	0.500
-40	0.900
-30	1.300
-20	1.700
-10	2.100
0	2.500
+10	2.900
+20	3.300
+30	3.700
+40	4.100
+50	4.500

Mechanical drawing

Example of Texense inertial units installation

The mounting holes enable to build a compact custom inertial system, mixing accelerometers and gyroscopes.

Ordering information

